Proofs of the Arithmetic of Derivatives 
 
 
 
 
 
 
 
 
Skip to main content \(\require{cancel}\newcommand{\dee}[1]{\mathrm{d}#1}
\newcommand{\half}{ \frac{1}{2} }
\newcommand{\ds}{\displaystyle}
\newcommand{\ts}{\textstyle}
\newcommand{\es}{ {\varnothing}}
\newcommand{\st}{ {\mbox{ s.t. }} }
\newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) }
\newcommand{\set}[1]{ \left\{#1\right\} }
\newcommand{\lin}{{\text{LIN}}}
\newcommand{\quot}{{\text{QR}}}
\newcommand{\simp}{{\text{SMP}}}
\newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)}
\newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}}
\renewcommand{\neg}{ {\sim} }
\newcommand{\limp}{ {\;\Rightarrow\;} }
\newcommand{\nimp}{ {\;\not\Rightarrow\;} }
\newcommand{\liff}{ {\;\Leftrightarrow\;} }
\newcommand{\niff}{ {\;\not\Leftrightarrow\;} }
\newcommand{\De}{\Delta}
\newcommand{\bbbn}{\mathbb{N}}
\newcommand{\bbbr}{\mathbb{R}}
\newcommand{\bbbp}{\mathbb{P}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\Si}{\Sigma}
\newcommand{\arccsc}{\mathop{\mathrm{arccsc}}}
\newcommand{\arcsec}{\mathop{\mathrm{arcsec}}}
\newcommand{\arccot}{\mathop{\mathrm{arccot}}}
\newcommand{\erf}{\mathop{\mathrm{erf}}}
\newcommand{\smsum}{\mathop{{\ts \sum}}}
\newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} }
\newcommand{\ave}{\mathrm{ave}}
\newcommand{\llt}{\left \lt }
\newcommand{\rgt}{\right \gt }
\newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};}
\newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};}
\newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};}
\newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};}
\newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};}
\newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};}
\newcommand{\YEstickfig}[3]{
\draw (#1,#2) arc(-90:270:2mm);
\draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);}
\newcommand{\IBP}[7]{
\begin{array}{|c  | l | l |}
\hline
\color{red}{\text{Option 1:}}
& u=#2
&\color{red}{\dee{u}=#3 ~ \dee{#1}}
\\
& \dee{v}=#5~\dee{#1}
&\color{red}{v=#7}
\\
\hline
\color{blue}{\text{Option 2:}}
& u=#5
&\color{blue}{\dee{u}=#6 ~ \dee{#1}}
\\
&\dee{v}=#2 \dee{#1}
&\color{blue}{v=#4}
\\
\hline
\end{array}
}
\renewcommand{\textcolor}[2]{{\color{#1}{#2}}}
\newcommand{\trigtri}[4]{
\begin{tikzpicture}
\draw (-.5,0)--(2,0)--(2,1.5)--cycle;
\draw (1.8,0) |- (2,.2);
\draw[double] (0,0) arc(0:30:.5cm);
\draw (0,.2) node[right]{$#1$};
\draw (1,-.5) node{$#2$};
\draw (2,.75) node[right]{$#3$};
\draw (.6,1.1) node[rotate=30]{$#4$};
\end{tikzpicture}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)
Section  2.5  Proofs of the Arithmetic of Derivatives 
 
¶ The theorems of the previous section are not too difficult to prove from the  definition of the derivative (which we know) and the arithmetic of  limits (which we also know). In this section we show how to construct  these rules.
Throughout this section we will use our two functions \(f(x)\) and \(g(x)\text{.}\) Since the  theorems we are going to prove all express derivatives of linear combinations, products  and quotients in terms of \(f,g\) and their derivatives, it is helpful to recall the  definitions of the derivatives of \(f\) and \(g\text{:}\)
\begin{align*}
f'(x) &=\lim_{h\to0} \frac{f(x+h)-f(x)}{h} &\text{and}&&
g'(x) &=\lim_{h\to0} \frac{g(x+h)-g(x)}{h}.
\end{align*}
Our proofs, roughly speaking, involve doing algebraic manipulations to uncover the  expressions that look like the above.
 
 
login