Definition 1.8.1 Limits involving infinity — formal
- 
Let \(f\) be a function defined on the whole real line. We say that
the limit as \(x\) approaches \(\infty\) of \(f(x)\) is \(L\)
or equivalently
\(f(x)\) converges to \(L\) as \(x\) goes to \(\infty\)
and write
\begin{align*} \lim_{x \to \infty} f(x) &= L \end{align*}if and only if for every \(\epsilon \gt 0\) there exists \(M \in \mathbb{R}\) so that \(|f(x)-L| \lt \epsilon\) whenever \(x \gt M\text{.}\)
Similarly we write
\begin{align*} \lim_{x \to -\infty} f(x) &= K \end{align*}if and only if for every \(\epsilon \gt 0\) there exists \(N \in \mathbb{R}\) so that \(|f(x)-K| \lt \epsilon\) whenever \(x \lt N\text{.}\)
 - Let \(a\) be a real number and \(f(x)\) be a function defined for all \(x\ne a\text{.}\) We write\begin{equation*} \lim_{x \to a} f(x) = \infty \end{equation*}if and only if for every \(P \gt 0\) there exists \(\delta\gt 0\) so that \(f(x) \gt P\) whenever \(0\lt |x-a|\lt \delta\text{.}\)
 - Let \(f\) be a function defined on the whole real line. We write\begin{equation*} \lim_{x \to \infty} f(x) = \infty \end{equation*}if and only if for every \(P \gt 0\) there exists \(M\gt 0\) so that \(f(x) \gt P\) whenever \(x \gt M\text{.}\)